

What is the Real World Impact of ARV Resistance?

Urvi M Parikh, PhD

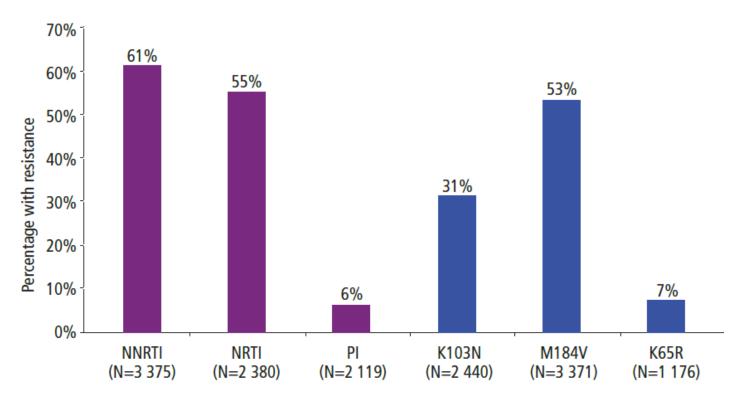
MTN Regional Meeting Cape Town, SA 10 Sept 2019

Will it Rain?

- Global trends in drug resistance
- Impact of Resistance on ART
- Impact of Resistance on PrEP
 - TDF/FTC PrEP: Trials to Rollout
 - DPV PrEP: Trials to Open Label
- Closing Thoughts

WHO Definitions

ACQUIRED DRUG RESISTANCE

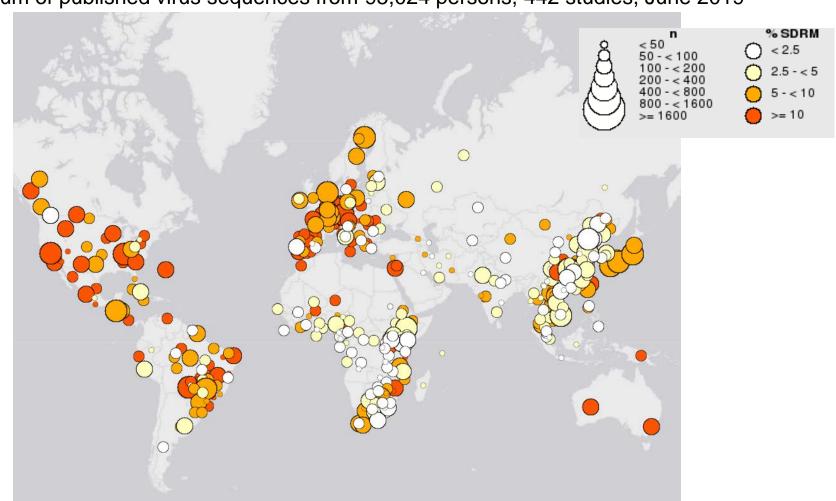


PRE-TREATMENT DRUG RESISTANCE

Drug resistance detected in someone starting ART

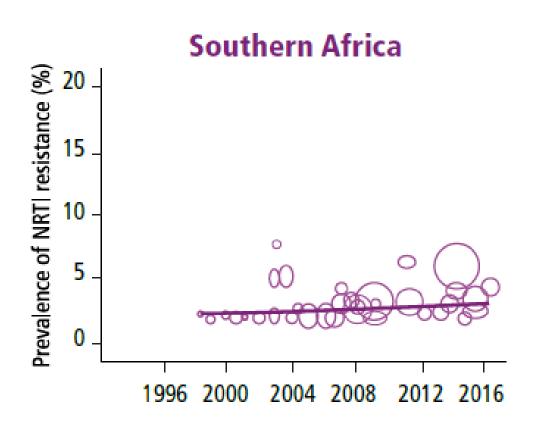
ADR among Individuals on ART

Based on systematic literature review, 2014 – 2017, WHO Resistance Report 2017



NNRTI=non-nucleoside reverse-transcriptase inhibitor NRTI=nucleoside reverse-transcriptase inhibitor PI=protease inhibitor

Global Rates of PDR


Stanford Resistance Database HIV-1 Drug Resistance in ARV-naive Populations

Compendium of published virus sequences from 95,024 persons, 442 studies, June 2019

NRTI PDR

PDR = Pre-treatment drug resistance (transmitted + prior ARV exposure)

Significant increase but rates still low (<5%)

Studies: 61 Patients: 11 855 P-value for association: 0.0154

NNRTI PDR

PDR = Pre-treatment drug resistance (transmitted + prior ARV exposure)

WHO National Survey Data							
WHO region	Country	Survey year	All (women and men)	Women	Men		
African region	Cameroon	2015					
	Eswatini	2016					
	Namibia	2015					
	Uganda	2016					
	South Africa	2017					
	Zimbabwe	2015					
evalence of PDR to EFV and/or NVP:		<10%		10-30%	>30%		

Projected Impact of HIVDR

HIV Synthesis Model, Sub-Sarahan Africa 2016 - 2030

Projections	AIDS Deaths	New Infections
With HIVDR	5,600,000	5,100,000
PDR < 10%	710,000 (13%)	380,000 (7%)
PDR ≥ 10%	890,000 (16%)	450,000 (9%)

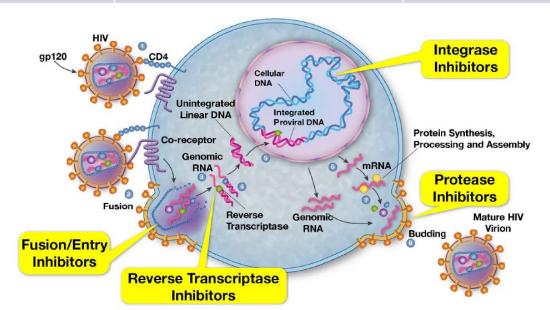
AIDS deaths and new HIV infections may increase with increasing prevalence of PDR

Consequences of ADR and PDR with ART and PrEP

Rising rates of PDR

- PDR reduces the effectiveness of 1st line ART. DTG promising but data is limited
- Newly infected people have to start with more complex 2nd line regimens
- PrEP fails to protect against resistant virus from partner

High prevalence of ADR in treatment failures


- Greater risk that someone with ADR will transmit resistant virus to their partner
- Increased risk of morbidity and mortality
- More expensive and complex treatment regimens

Increasing Cost and Complexity with Therapy Switches

We're Using The Same Drugs and Drug Classes for ART and PrEP!

Class	ART	PrEP
NRTI	Tenofovir, FTC, TAF	Tenofovir, FTC, TAF
NNRTI	Efavirenz, Rilpivirine	Dapivirine
Integrase Inhibitors	Dolutegravir	Cabotegravir

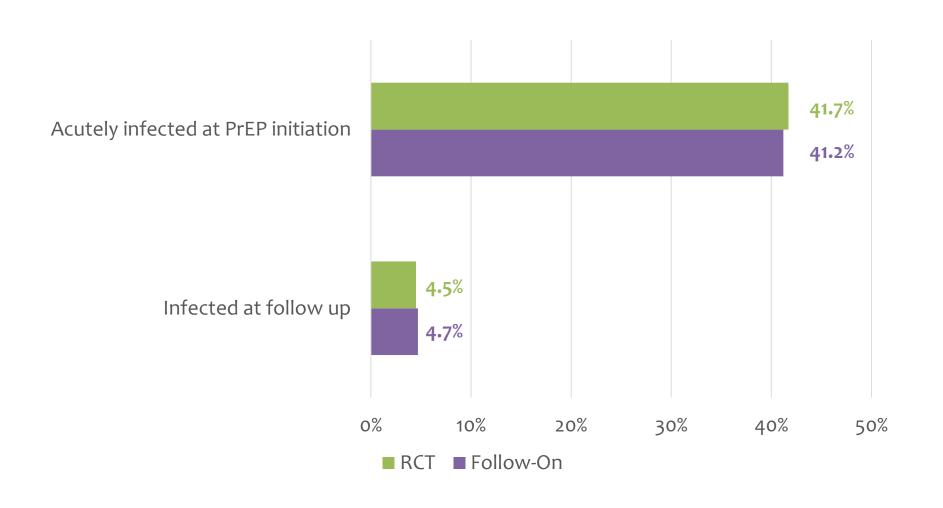
TDF/FTC PrEP

TDF/FTC Resistance from Trials and Open Label Studies

Randomized Clinical Trials

N = 5475

Open-Label and Demo Studies



N = 2878

TDF/FTC Resistance from Trials and Open Label Studies

Trials vs Real World

Trials

Monthly HIV testing; rule out acute infection with VL

Standard and sensitive resistance test; PK testing

Stable source of product

Real World

Quarterly or less frequent testing

Resistance and PK testing only through projects

Drug stock outs, changes in access, intermittent use

PrEP Resistance Monitoring: Rollout

Partner with roll-out projects and programs

Collect and test DBS from PrEP seroconverters

Determine frequency of resistance selection in seroconverters

Coordinated by:

GEMS, MOH, National Labs, USG Partners (CDC, USAID), NGO and Academic Project Partners

Sample Size:

Approximately 500 infected clients in 3-5 countries

Resistance Monitoring in TDF/FTC PrEP Rollout

Kenya

Protocol implemented as part of national rollout

South Africa

Implemented by project partners

Zimbabwe

Protocol implemented as part of national rollout

Uganda

Implemented by project partners

Eswathini

Planning in progress

Current Partners in Four Countries

64,000 lives on PrEP through 28 partners being monitored for HIVDR

5 Reported TNV/FTC Breakthrough HIVDR Cases

Case	Patient	PrEP Duration	Adherence	Resistance	Ref
I	Toronto 43yo MSM	>21 months	High (PK)	High: 3TC, FTC, NVP, EVG Intermediate: ABC, EFV, ETR, RTG Low:TFV, DTG	Knox NEJM 2017
2	New York 26yo MSM	4 months	High (PK)	K65R+M184V, K103S, E138Q, Y188L	Markowitz JAIDS 2017
3	North Carolina 34yo MSM	~II months	Adequate	K65R, M184V, K103N	Thaden CROI 2018
4	King Country MSM	Unknown	High (Self-Report)	reported resistance to both drugs in Truvada	Golden, unpublished
5	San Francisco 21yo MSM	13 months	High (PK)	L74V, L100I, M184V, K103N	Cohen IDWeek 2018

Amsterdam Case (CROI 2017): No resistance

^{*}Estimated 136,000 on PrEP from Gilead data, 2012 – 2016 (USA)

What does it mean?

- PrEP works to prevent HIV infection in those who use it.
- Number of reported seroconverters on PrEP is very small, but if you do get infected on PrEP, there is a risk of resistance
 - May have already been infected when PrEP was started
 - Inconsistent adherence before and after infection occurred
- Resistance should continue to be monitored with PrEP rollout.

Treatment after PrEP Seroconversion

If a PrEP user becomes infected with HIV, will first line ART still work?

WHO First Line Recommendations

- 1. DTG-based regimen (2018)
- 2. TDF + 3TC or FTC + EFV_{600mg} (2013 and 2015)

Modelling Approach:

- Individual-based model of heterosexual transmission and progression of HIV and the effect of ART. This same model used to address a variety of policy questions relating to prevention, testing and treatment programmes
- Calibrated to KZN

Dolutegravir: Promising but with Concerns

- Better tolerated and higher efficacy than EFVbased regimens (TLE)
 - Little to no transmitted DTG resistance
- PEPFAR rollout/switch starting (\$75 per year)
 - 1st line, 2nd line, beyond

- DTG monotherapy can select resistance (Wijting, et al. Lancet HIV 2017)
- TDF/FTC is still used with PrEP and first line ART
- Double dosing of DTG required with rifampin (Tb)

Limited Data on 1st line DTG

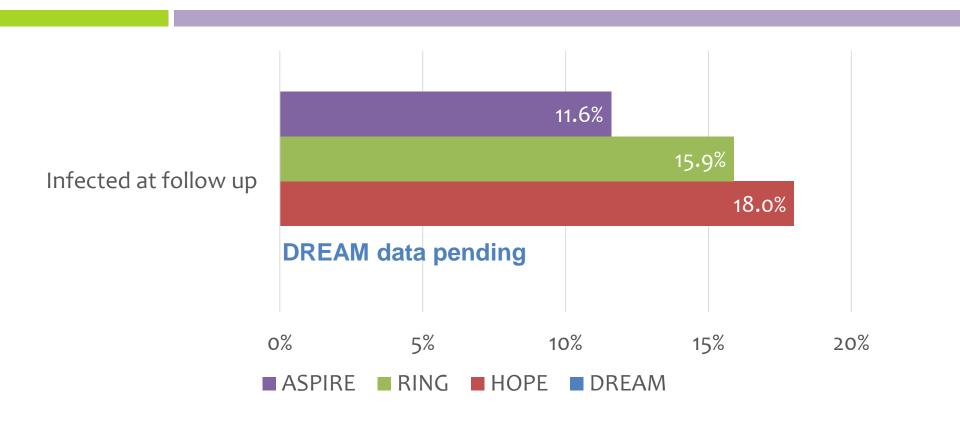
 Will DTG be effective against PDR with M184V and/or K65R?

- ACTG 5381
 - ACTG-PEPFAR Cohort study (N = 1500)
 - TLD for 1st line, 2nd line, 3rd line, and Tb coinfection
 - Adolescents (>10 years) and adults
 - Kenya, Uganda, Zimbabwe, Malawi, SA, and Haiti

DPV Ring

4 Dapivirine Ring Studies

Randomized Clinical Trials


Open-Label Studies

Standard Genotyping: DPV Ring

Number and % with NNRTI Mutations

NO DPV

ASPIRE PLB 10 of 96 (10.4%)

RING PLB 8 of 57 (14.0%)

2014-16 PDR 11.0% (7.5–15.9%)

DPV RING

ASPIRE

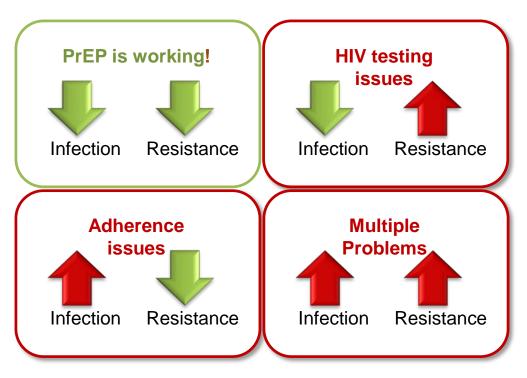
8 of 69 (11.6%)

RING

13 of 82 (15.9%)

HOPE

7 of 38 (18.4%)


Standard genotyping

NO DIFFERENCE

Beyond the Trials

Resistance Concerns with PrEP

- Resistance is a risk with seroconversion on PrEP
- Can help identify programmatic issues
- Critical for preserving ARVs for both treatment and prevention.

Resistance Concerns with ART

Long-term (4-5 year) suppression rates of 60-85%

Spotty viral load (HIV RNA) monitoring

Resistance testing is limited

ARV stock-outs

WHO Global Action Plan Strategic Objectives

1. PREVENTION AND RESPONSE

Implement high impact interventions to prevent and respond to HIVDR.

2. MONITORING AND SURVEILLANCE

Obtain quality data on HIVDR and HIV servie delivery from periodic surveys, while expanding routine viral load and HIVDR testing.

3. RESEARCH AND INNOVATION

Encourage relevant and innovative research which will have the greatest public health impact in minimizing HIVDR.

4. LABORATORY CAPACITY

Support and expand use of viral load testing and build capacity to monitor HIVDR.

5. GOVERNANCE AND ENABLING MECHANISMS

Ensure country ownership, coordinated action, awareness/advoacy and sustainable funding are in place to support action on HIVDR.

Knowledge Gaps

- Updated survey data on HIVDR
- Efficacy of recycled NRTIs for second line ART
- Optimal strategies for adherence and retention support for key populations

Conclusions

 As long as there is imperfect use of PrEP and suboptimal adherence of ART, resistance will happen in the real world.

 But monitoring resistance through updated surveillance and managing resistance through more options for ART and PrEP will limit its impact on morbidity and mortality from HIV/AIDS.

Acknowledgements

University of Pittsburgh, Pittsburgh, Pennsylvania

Division of Infectious Diseases

John Mellors Kerri Penrose Amy Heaps Kelley Gordon Breanna Goetz Kevin McCormick

Bioinformatics

Uma Chandran Rahil Sethi Jacob Waldman William Schwarzmann National Cancer Institute, Frederick, Maryland National

Valerie Boltz Mary Kearny Wei Shao

The International Partnership for Microbicides developed the Dapivirine Vaginal Ring and supplied the rings for this trial.

Fred Hutchinson Cancer Research Institute, Seattle, Washington; Statistical Center for HIV/AIDS Research and Prevention (SCHARP)

Marla Husnik
Danny Szydlo
Haixiao Huang
Jason Pan
Sara Aranda
Jennifer Berthiaume
Karen Patterson

The Microbicide Trials Network is funded by the National Institute of Allergy and Infectious Diseases (UMrAlo68633, UMrAlo68615, UMrAlo6707), with co-funding from the Eurice Kennedy Shriver National Institute of Child Health and Human Development and the National Institute of Mental Health, all components of the U.S. National Institutes of Health.

MTN-020 ASPIRE STUDY TEAM MTN-025 HOPE STUDY TEAM All participants

GEMS Team

John Mellors, MD, Project Director Urvi Parikh, PhD, Project Co-Director Lauren Kudrick, MA, Project Administrator

Science Team

Kevin McCormick, PhD, Post-Doc. Associate Kerri Penrose, MS, Research Scientist Amy Heaps, MS, Research Scientist Barbra Richardson, PhD, Statistician Uma Chandran, PhD, Bioinformatics Rahil Sethi, Bioinformatics Jacob Waldman, Bioinformatics

KENYA Team

Bhavna Chohan, PhD, Sr. Country Coord.

Everline Bosek, Country Coordinator

Modeling Team

Andrew Phillips, PhD, Lead Modeler Fumiyo Nakagawa, PhD, Post-Doc. Associate Valentina Cambiano, PhD, Modeling Scientist

SOUTH AFRICA Team

Carole Wallis, PhD, Sr. Technical Advisor Raquel Viana, PhD, Research Scientist

USAID

Keven Rebe, PhD, ANOVA Lubbe Wiesner, UCT, Pharmacokinetcs

Monitoring and Evaluation

Jill Peterson, MPP, M&E Director Delivette Castor, PhD, GEMS AOR

Sarah Wiant, MPH GEMS Program Asst.

Lisa Levy, Policy Team Lead Kristine Torjesen, MD/MPH, Policy and **Evaluation Advisor, OPTIONS Director** Irina Yacobson, MD, Policy Specialist Rick Homan, PhD, Health Economist Maria Fawzy, MHA, Clinical Research Manager

ZIMBABWE Team

Megan Dunbar, PhD, Sr. Country Coordinator Imelda Mahaka, PZAT TBD, Country Coordinator