What's New in HIV Drug Resistance?

Urvi M. Parikh, PhD & John W. Mellors, MD MTN Virology Core University of Pittsburgh

Outline

What's old in HIV drug resistance?
Quick refresher
What's new?
Does prior resistance matter?
Do minor resistant variants matter?

Origins of HIV Drug Resistance

- Large, diverse population of HIV variants <u>within</u> a <u>chronically</u> infected individual
 - High viral replication: ~10¹¹ virions produced per day
 - sloppy RT: ~3 errors per 100,000 bases copied
 - RT doesn't correct its errors
 - No two genomes are the same!
 - Differ on average by one base out of ~10,000

Billions of mutants produced daily!

 For many ARV, a single nucleotide change results in resistance:

- TNV (K65R): AAA to AGA
- FTC (M184V): ATG to GTG
- EFV (K103N): AAA to AAC

• With 10¹¹ genomes produced daily:

- All possible single mutants produced daily
- Double mutants probably also exist
- Triple mutants probably do not

» $P = 10^{-12} (10^{-4} \times 10^{-4} \times 10^{-4}) < 10^{11}$ genomes/day

Lessons Learned from ART

- Resistant variants are rapidly selected by monotherapy with drugs for which 1 mutation confers resistance
- Incomplete suppression of viral replication results in accumulation of multiple mutations, more resistance and broader cross-resistance

Principles of Successful ART

Cover all pre-existing mutants

Single and double drug-resistant mutants

Suppress new cycles of HIV replication

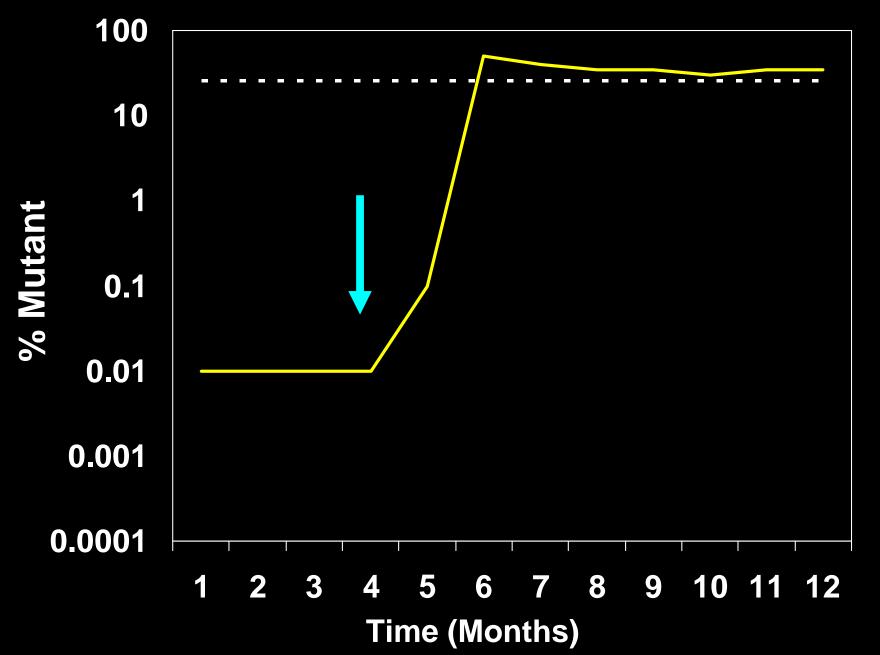
Plasma HIV RNA < 50 copies/ml

Generally requires 3 potent drugs

With non-overlapping resistance mutations

ARTMANTRA

No Replication = No Resistance


Relevant Issues for PrEP

- Individuals who are put on PrEP with undiagnosed HIV infection will develop resistance
 - Unless PrEP is equivalent to ART (impractical)
- Route of PrEP administration may affect resistance
 - Systemic vs. local
- Individuals who become infected on PrEP will likely develop resistance unless it is stopped promptly
 - Impact of resistance on future response to ART???
 - » Next part of talk!!!!

Two Examples of Impact

- Impact of NNRTI resistance from prior sdNVP on response to initial ART (Lockman et al. CROI 2008)
- Impact of low frequency NNRTI resistant variants on response to multidrug regimens in treatmentexperienced patients (Halvas et al. JID in press)

Transient Monotherapy Selects Pre-existing Mutant

Lopinavir/ritonavir (LPV/r) + Tenofovir/Emtricitabine (TDF/FTC) is Superior to Nevirapine (NVP)+TDF/FTC For Women With Prior Exposure to Single-Dose Nevirapine:

AIDS Clinical Trials Group A5208

Optimal Combination Therapy After Nevirapine Exposure

Acknowledgements

Study participants!

Study site staff

Study vice chairs: Judy Currier James McIntyre

Study team John Mellors Sue Eshleman Fran Aweeka Farida Amod Aida Asmelash Tom Campbell Tsungai Chipato Francesca Conradie Monica Carten Elizabeth Dangaiso Robin DiFrancesco **Betty Dong** James Hakim Lou Halvas Scott Hammer Jane Hitti **Bill Holmes** Mina Hosseinipour Lynn Kidd-Freeman **Cissy Kityo**

Cecilia Kanyama Christine Kaseba Dan Kuritzkes Chiedza Maponga **Cheryl Marcus** Mary Marovich Rosie Mngqbisa Lerato Mohapi Peter Mugyenyi **Bev Putnam** Michael Saag **Bob Salata** Ian Sanne Fred Sawe Chip Schooley **Doug Shaffer** Abraham Siika Elizabeth Stringer Heather Watts Carolyn Wester Kara Wools-Kaloustian Lynette Purdue Peter Ziba **Beth Zwickl**

Study team, continued SDAC Michael Hughes **Evelyn Zheng**

> ACTG Ops Evelyn Hogg Christina Blanchard-Horan Nikki Gettinger Yvette Delph Linda Berman

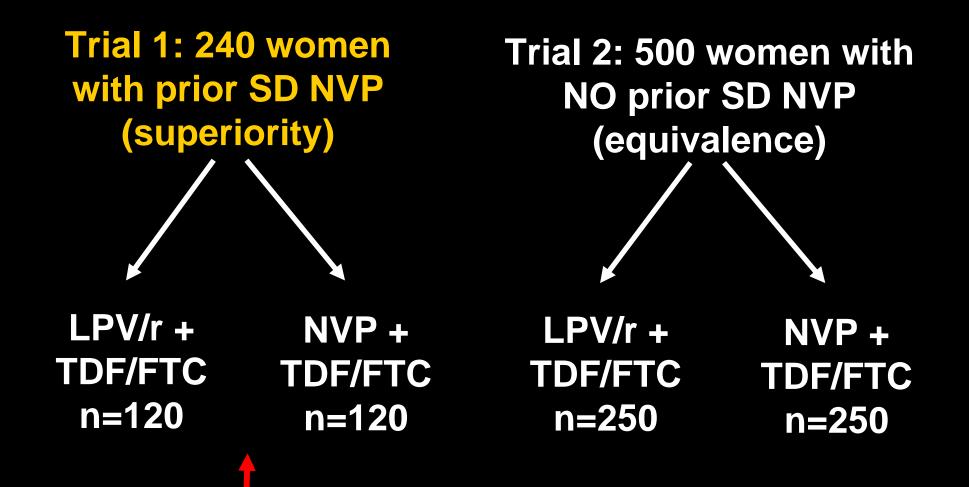
FSTRF

Ann Walawander Apsara Nair Laura Smith Jimi Tutko

NIAID, DAIDS

Beverly Alston-Smith Eva Purcelle Elaine Ferguson Ana Martinez Bola Adedeji Sandy Lehrman **Jeffrey Nadler**

Pharmaceutical supporters Abbott: Sibtain Rahim Boehringer Ingelheim: Carolyn Connor, Marita McDonough Gilead: Jim Rooney, Audrey Shaw Glaxo SmithKline: Navdeep Thoofer, Wendy Snowden **Bristol-Myers Squibb: Awny** Farajallah, Kristy Grimm

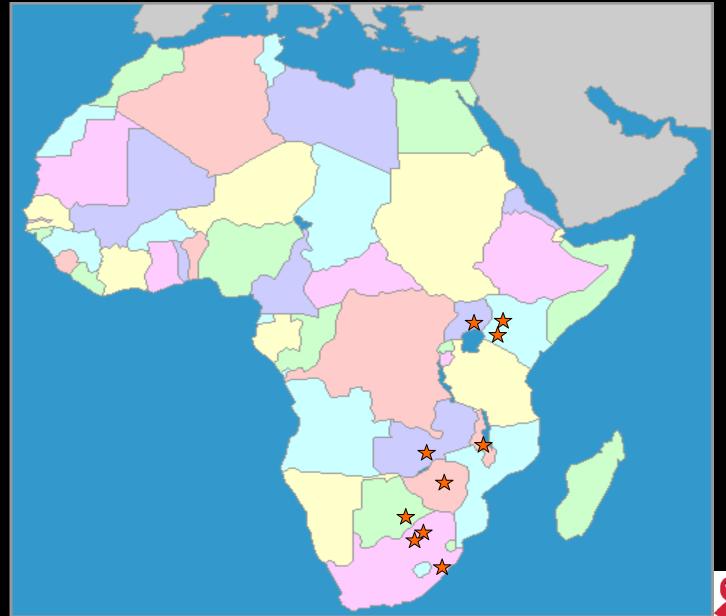


Background

- Single dose nevirapine (SD NVP) is frequently used to prevent mother to child transmission (MTCT) of HIV-1, where resources are limited
- NVP is also a component of first-line antiretroviral treatment (ART) globally
- NVP-resistant virus is detected in up to 75% of women after SD NVP, but "fades" from plasma over time
- A5208 was designed to study whether prior SD NVP exposure compromises subsequent virologic response to NVPcontaining ART

Study Design

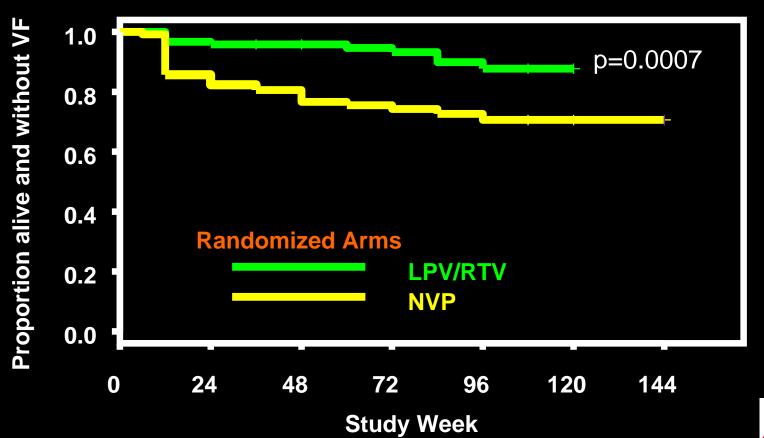
Only Trial 1 results presented today



Selected Eligibility Criteria

- HIV-1-infected women
- CD4 < 200 cells/mm³ in past 90 days
- No prior ART
- Trial 1: prior SD NVP at least 6 months previously
- Estimated creatinine clearance > 60 mL/min

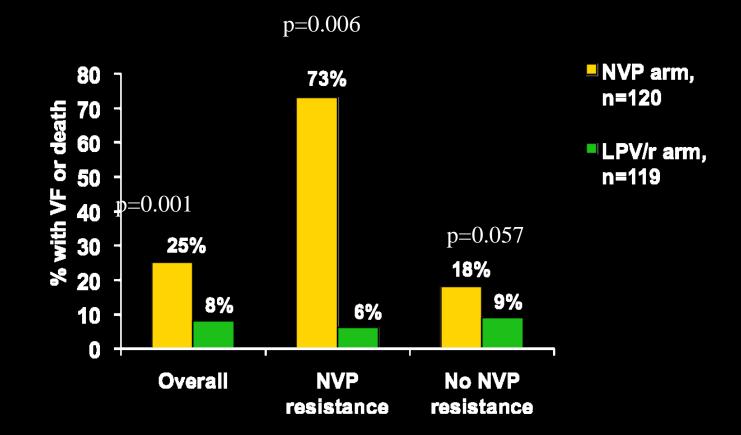
10 Study Sites, 7 Countries in Africa


Baseline Characteristics

Characteristic	NVP arm	LPV/r arm	Total
	n=121	n=120	n=241
Age (median years)	30	31	31
CD4 (median cells/mm ³)	141	138	139
HIV-1 RNA (median log ₁₀)	5.20	5.14	5.15
Time from most recent SD NVP (months)	16	17	17
Previous zidovudine exposure	11%	10%	10%
HIV-1 subtype C	73%	72%	72%
Written documentation of SD NVP receipt	71%	75%	73%

KM Plot of Time to Primary Endpoint (Virologic Failure or Death)

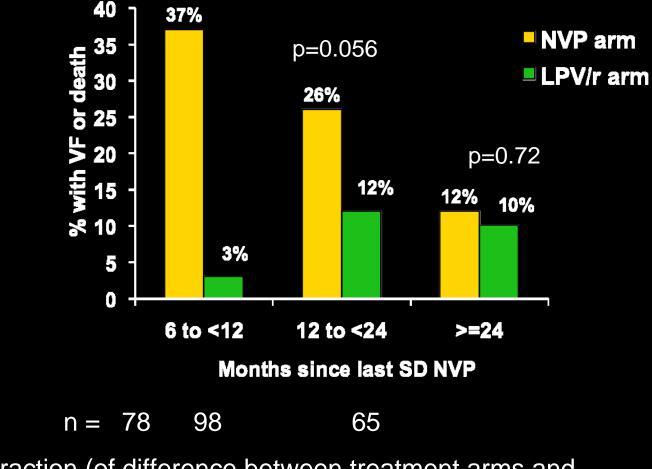
41 women reached an endpoint:
-31 (26%) in NVP and 10 (8%) in LPV/r arms
Hazard ratio 3.55 (95% CI 1.71, 7.34)



Baseline NVP Resistance

- Pre-planned HIV drug resistance testing (ViroSeq) of baseline samples (run retrospectively)
- Interpreted using modified IAS-USA tables
- Results available for 239 of the 241 participants
 - 33 (14%) had NVP resistance mutations at baseline (K103N in 28, Y181C in 5)
- Median time since last SD NVP exposure:
 - 11 months in 33 women with NVP resistance
 - 17 months in 206 without resistance (p=0.024)

Proportions With Virologic Failure or Death, By Presence of NVP Resistance at Baseline



P value for interaction (of difference between treatment arms and presence/absence of resistance) = 0.040

Proportions With Virologic Failure or Death, By Time Since Last SD NVP Exposure

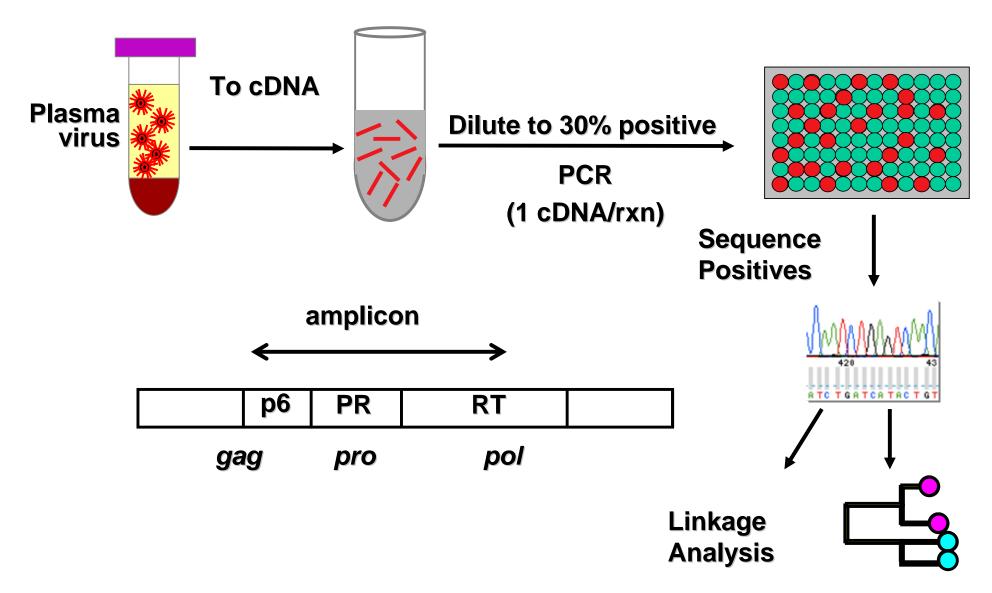
p=0.008

P value for interaction (of difference between treatment arms and continuous time since last SD NVP) = 0.20

A5208/OCTANE Conclusions

- Treatment with LPV/r+TDF/FTC is superior to treatment with NVP+TDF/FTC among women with prior SD NVP exposure and CD4 < 200 cells/mm³
- The difference between regimens is greater for women with pre-treatment NVP resistance than for women without resistance
- The difference between treatment regimens appears persists at least 2 years after prior sdNVP
- Detection of low frequency drug-resistant variants is in progress for women with negative standard genotypes

What are low frequency drugresistant variants?


- Cannot be detected by standard genotype
- For standard genotype:
 - HIV RNA is extracted, reverse transcribed, PCR amplified, and sequenced as a population and not as individual molecules

» Termed "Bulk, population, or composite" genotype analysis

 Alleles that are present in <25% of the RNA are not reliably detected above background

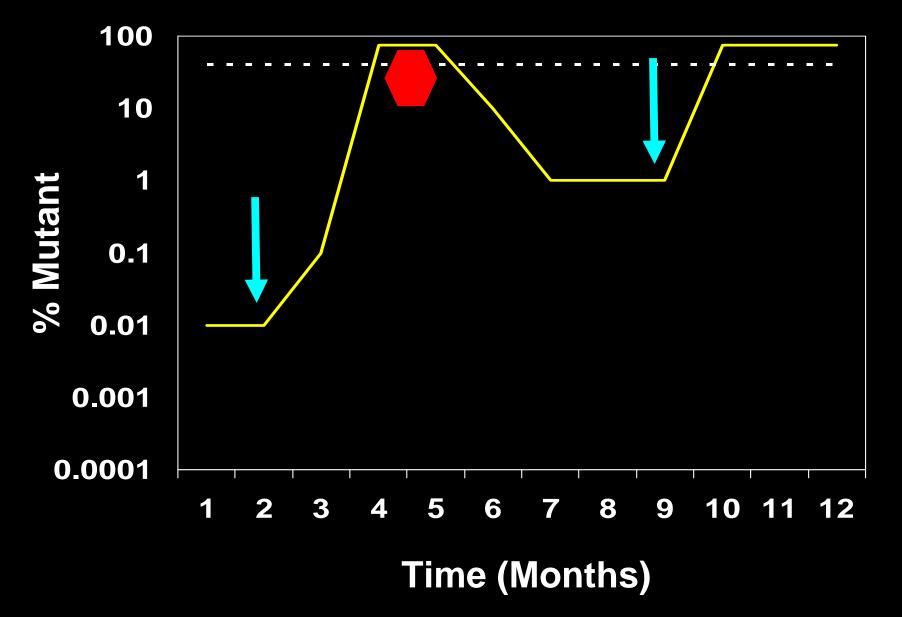
How can low frequency drug-resistant variants be detected?

Single Genome Sequencing

SGS vs. Standard Genotype in Patients with Suspected MDR (N = 26)

	Standard Genotype		
% Mutant by SGS	Detected	Not Detected*	
1-10%	1%	99%	
>10% - 35%	25%	75%	

*Including multiple, linked resistance mutations


Palmer et al, J Clin Microbiol 2005; 43:406-413

Two Examples of Impact

- Impact of NNRTI resistance from prior sdNVP on response to initial ART (Lockman et al. CROI 2008)
- Impact of low frequency NNRTI resistant variants on response to multidrug regimens in treatmentexperienced patients (Halvas et al. JID in press)

Re-selection of "Low Frequency" Mutant

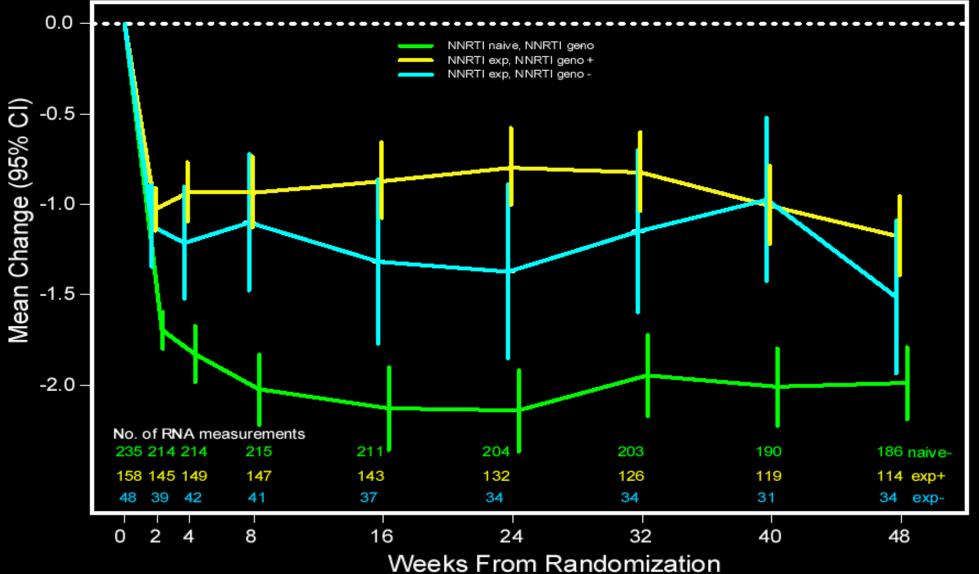
Low Frequency NNRTI-Resistant Variants Contribute to Failure of Efavirenz-Containing Regimens in NNRTI-Experienced Patients

Elias K. Halvas, Ann Wiegand, Valerie F. Boltz, Mary Kearney, Dwight Nissley, Michael Wantman, Scott M. Hammer, Sarah Palmer, Florin Vaida, John M. Coffin and John W. Mellors

ACTG 398 Study Population

- N = 481 enrolled
- HIV RNA ≥1,000 c/ml on PI-containing regimen
- No prior abacavir, amprenavir, efavirenz
- Enrollment stratified by NNRTI experience
 - 56% naïve
 - 44% experienced (>7days)
- Standard baseline genotype (ABI ViroSeq v2.0)

- N = 452 (94%)


ACTG 398: Study Arms Hammer et al., JAMA 2002

Efavirenz 600 mg QD + Abacavir 300 mg BID + Adefovir 60 mg QD + Amprenavir 1200 mg BID

Randomized to:

Saquinavir 1600 mg BID or Indinavir 1200 mg BID or Nelfinavir 1250 mg BID or Matched PI Placebo

ACTG 398: HIV-1 RNA response (log₁₀ copies/ml) by NNRTI Experience and NNRTI mutations

Methods (Sample Selection)

Random sample of baseline specimens

- Negative for NNRTI mutations (ABI v2.0)
- Experienced virologic failure
- Duration off NNRTI:

» Median 336 days (range 0 – 555 days)

SGS in NNRTI-Naïve

PID	NNRTI Mutations at Baseline by Std Sequencing	NNRTI Mutations at Baseline by SGS	Total # of Mutants	NNRTI Mutations at Failure by Std Sequencing
1N	None	None	0 of 52	K103N, V108I
2N	None	None	0 of 52	K103N
3N	None	None	0 of 49	K103N, V108I
4N	None	None	0 of 55	K103N
5N	None	P225H	1 of 53	K103N
6N	None	None	0 of 51	K103N
7N	None	K103N	1 of 40	K103N, M230L
8N	None	None	0 of 50	K103N, G190A
9N	None	None	0 of 63	K103N
10N	None	None	0 of 46	K103N
11N	None	None	0 of 51	L100I, K103N
12N	None	L100I	2 of 48	G109S
13N	None	None	0 of 48	K103N, Y181C
14N	None	None	0 of 45	K103N, V108I
15N	None	None	0 of 70	K103N, G190A
Total	0 of 15	3 of 15	3 of 773	1 of 3 Match

SGS in NNRTI-Experienced

PID	NNRTI Mutations	NNRTI Mutations	# Mutant	NNRTI Mutations
	at Baseline by Std	at Baseline by	of Total	at Failure by
	Sequencing	SGS		Std Sequencing
1E	None	V108I	2 of 32	K103N, <mark>V108</mark> I
2E	None	None	0 of 48	L100I, K103N
3E	None	K101E	8 of 41	L100I, <mark>K101E</mark> , Y188H/L
4E	None	None	0 of 45	K103N, P225H
5E	None	K101E, Y181C, G190A	10 of 30	K101E, V108I, Y181C, G190A/S
6E	None	Y181C	3 of 19	K103N, <mark>Y181C</mark>
7E	None	K103N	1 of 33	K103N, V108I
8E	None	K103N	1 of 34	K103N, V108I
9E	None	None	0 of 46	K103N
10E	None	None	0 of 48	L100I, K103N
11E	None	G190E	1 of 45	K103N
12E	None	Y181C, G190A	5 of 47	K101E, Y181C, G190A
Total	0 of 12	8 of 12	31 of 468	7 of 8 Match

Association of Low Frequency Mutants with NNRTI Experience

NNRTI-Naïve	NNRTI-Experienced	P-value
3/15	8/12	P=0.022
3/773	31/468	P<0.0001

D.


Patient 5E: NNRTI Experienced

O Baseline Wild Types

Baseline Mutant

Failure Mutants

<u>Genotypes</u> B1-B10: K101E, Y181C, G190A F1, F2, F4, F8-F10, F12-F14 : K101E, V108I, Y181C, G190A F3, F5-F7: K101E, Y181C, G190S F11, F15: K101E, Y181C, G190A

Low Frequency NNRTI-Resistant Variants

 Are missed by standard genotyping but can be detected by SGS

- Are associated with reduced virologic response to efavirenz-containing therapy
- Can be linked to the dominant virus population at virologic failure

Clinical Implications

Prior NNRTI exposure matters "What you can't see can hurt"

Implications for PrEP Trials and PrEP

Transient resistance may impact future response to ART

- Resistance to TNV or FTC may differ from NNRTI
 - »Less fit virus, decline faster to lower frequency
- Resistance to topical product may also differ

»May not disseminate

 Nevertheless, must be diligent in detection of resistance from PrEP (MTN-003) and perform long-term follow-up of seroconverters (MTN-015)

Thank You