Multipurpose Intravaginal Ring: Tenofovir / Levonorgestrel

Christine Mauck, MD, MPH
Why develop a multipurpose ring?

• Providing drug in a **ring** is likely to facilitate use:
 – Long-acting - does not require attention at the time of sex or daily attention, yet woman-controlled unlike implant or IUD
 – Discreet: does not require user to carry or dispose of anything
 – One ring lasts for 90 days - more economical
 – Can deliver other active ingredients
 – Acceptable, expands method mix

• TFV: has shown proof of concept for prevention of HIV & HSV when used topically and systemically
Why develop a multipurpose ring?

- Providing contraception in addition to HIV prevention is likely to facilitate use:
 - Adherence is associated with perception of risk
 - Most women see themselves as at high risk of pregnancy (but not HIV)
 - Use of contraceptive may be more socially acceptable than use of HIV preventive
In this talk, I will describe:

• CONRAD tenofovir/levonorgestrel ring:
 – Choice of LNG
 – Ring design
 – Preclinical testing
 – Clinical study design
Use of Levonorgestrel

- Synthetic progestin used in many contraceptives:

<table>
<thead>
<tr>
<th>Type</th>
<th>LNG-only</th>
<th>LNG + estrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral</td>
<td>Daily “mini-pill”</td>
<td>Daily combined pill</td>
</tr>
<tr>
<td></td>
<td>Emergency contraception</td>
<td>Emergency contraception</td>
</tr>
<tr>
<td></td>
<td>Pericoital pill</td>
<td></td>
</tr>
<tr>
<td>Implant</td>
<td>Norplant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jadelle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sino-Implant</td>
<td></td>
</tr>
<tr>
<td>Transdermal</td>
<td>LNG patch</td>
<td>LNG + ethinyl estradiol patch</td>
</tr>
<tr>
<td>Genital tract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrauterine</td>
<td>Mirena IUS – 20 µg/day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skyla IUS – 14 µg/day</td>
<td></td>
</tr>
<tr>
<td>Intravaginal</td>
<td>LNG ring - 20 µg/day</td>
<td>LNG + estradiol ring</td>
</tr>
<tr>
<td></td>
<td>LNG/carraguard Gel</td>
<td></td>
</tr>
</tbody>
</table>

(Bold = commercially available. Others investigational or discontinued)
Use of Levonorgestrel

Synthetic progestin used in many contraceptives:

<table>
<thead>
<tr>
<th>Systemic</th>
<th>LNG-only</th>
<th>LNG + estrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral</td>
<td>Daily “mini-pill”</td>
<td>Daily combined pill</td>
</tr>
<tr>
<td>Emergency contraception</td>
<td>Emergency contraception</td>
<td></td>
</tr>
<tr>
<td>Pericoital pill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implant</td>
<td>Norplant</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jadelle</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sino-Implant</td>
<td></td>
</tr>
<tr>
<td>Transdermal</td>
<td>LNG patch</td>
<td>LNG + ethinyl estradiol patch</td>
</tr>
<tr>
<td>Genital tract</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intrauterine</td>
<td>Mirena IUS – 20 µg/day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skyla IUS – 14 µg/day</td>
<td></td>
</tr>
<tr>
<td>Intravaginal</td>
<td>LNG ring - 20 µg/day</td>
<td>LNG + estradiol ring</td>
</tr>
<tr>
<td></td>
<td>LNG/carraguard Gel</td>
<td></td>
</tr>
</tbody>
</table>

(Bold = commercially available. Others investigational or discontinued)
Systemic vs genital delivery of LNG

- Genital delivery \rightarrow lower plasma levels and higher genital tract levels\(^1\)
- Distribution from the upper vagina into the endometrium may be from uterine vein to uterine artery – “Uterine first pass effect”\(^2\)
- Genital tract effects from genital delivery may differ from those seen after systemic delivery

\(^1\)Devoto 2005 Fertil Steril 84(1):46-51
\(^2\)Lete 2010 Curr Drug Met 11:839-49
Levonorgestrel

Main mechanisms of action:

1) Suppression of ovulation
2) Cervical mucus thickening, impeding sperm migration
Suppression of ovulation

- Complete suppression of ovulation not needed for a contraceptive effect.
- Alterations in endocrine profile can provide contraception while maintaining normal bleeding patterns:
 - No development of the ovarian follicle (and therefore no ovulation)
 - Some follicular development but no ovulation and no increase in progesterone
 - Follicular development with luteinized unruptured follicle and progesterone production
 - Normal ovulation
- If ovulation does occur, changes in cervical mucus prevent pregnancy
Complete suppression of ovulation not needed for contraception

- **Mirena:**
 - Mirena: ~50% of cycles are ovulatory in the 1st year, and about 75% in the 4th year, but pregnancy rate is 0.7% over 5 years

- **Norplant:**
 - 20% of cycles are ovulatory in the 1st year, and 50% in the 5th year, but still contraceptive
LNG’s effect on Cervical Mucus

• Cervical mucus protects uterine cavity from pathogens; controls sperm migration
• Before ovulation: ↑ Estrogen → ↑ secretion and ↑ water → easier sperm migration
• “Quality” assessed via volume, viscosity, spreadability (Spinnbarkeit), crystallization pattern (ferning), and cellularity
 – Score of ≥ 10 out of 15 considered “good”
• Even in ovulatory cycles, LNG → thick mucus with poor sperm penetration
 – Happens quickly:
 • Norplant: 3 days after insertion, sperm penetration becomes poor despite high estradiol levels\(^1\)
 • Mirena users: Cervical mucus becomes poor in 7 out of 10 one day after insertion, in 10 out of 10 by third day\(^2\)
 – Effect is profound:
 • In Mirena 20 µg users, no sperm migration despite ovulation\(^3\)
 • LNG 20 µg ring: Inhibition of sperm migration in 92% of post-coital tests\(^4\)
 – Happens at low dose
 • Seen with lower LNG dose in IUS – Skyla (14 µg)\(^5\)

Efficacy of 20 µg LNG ring shown in 2 trials

- Efficacy of silicone ring releasing 20 µg/day studied in 1980s:
 - 90-day ring used for 1 – 2 years
 - WHO study (n = 1005)
 - Pregnancy rate at 1 year: 3.5 per 100 women (95% CI 2.2-5.0)
 - UK study (n = 1591)
 - Pregnancy rate:
 - At 1 year: 5.1 per 100 women (95% CI 3.6-6.6)
 - At 2 years: 6.5 per 100 women (95% CI 4.4-8.6)
 - Within range of other user-controlled hormonal methods

- Suppression of ovulation correlated with irregular bleeding among ring users
 - # days with bleeding and spotting significantly higher in segments with suppressed ovulation vs normal ovulation¹

- Development discontinued until now

The CONRAD TFV/LNG ring: Design challenges

• Goal: meet 2 target release profiles not achieved using any other ring platform:
 – Approximately 10 mg/d TFV for ≥ 90 days
 – 20 µg/d LNG for ≥ 90 days

• Challenges:
 1) Release 2 very different drugs
 • TFV: hydrophilic, poorly released from traditional silicone or EVA rings
 • LNG: hydrophobic
 2) At very different rates
 • TFV: about 10 milligrams/day
 • Requires high drug loading (>1 gram TFV in a 4.5 gram ring)
 • LNG: 20 micrograms/day
 3) At a steady rate over time (zero order) for ≥ 90 days
The CONRAD TFV/LNG Ring: Solutions

- Developed in collaboration with Patrick Kiser, Northwestern University
- Polyurethane reservoir rings:
 - Using commercially available biomedical grade polyurethanes that range from hydrophilic to hydrophobic

- Suitable for 2 different drugs using 2 different segments, releasing at 2 different rates:
 - TFV segment:
 - Hollow-core reservoir using hydrophilic polyurethane
 - High loading capacity and rate of release
 - LNG segment:
 - Solid-core reservoir using hydrophobic polyurethane
 - Similar to NuvaRing (EVA) design

- Result: tightly controlled steady release for long duration
- Suitable for one or more drugs (similar or diverse)

The CONRAD TFV/LNG ring: In vitro target release profiles met

Clark 2014 PLoS ONE 9(3):e88509
The CONRAD TFV/LNG ring: Animal PK studies, TFV

Sheep

Pigtail Macaques

- Median TFV-DP in macaque vaginal tissue: $1.7-7.4 \times 10^4$ fmol/mg
- Time-independent TFV release from ring. Median levels similar to gel.

Johnson et al, AAC 2012 (56): 6272-83; Moss et al, AAC 2012 (56): 5952-5960
Ongoing CONRAD study

• First multipurpose ring in clinical trials:
 – Phase I One-Month Safety, Pharmacokinetic, Pharmacodynamic, and Acceptability Study of Intravaginal Rings Releasing Tenofovir and Levonorgestrel or Tenofovir Alone (Protocol A13-128)

• 100 women consented to complete 50 across 2 sites:
 – Eastern Virginia Medical School, Norfolk, VA: Annie Thurman, PI
 – Profamilia, Santo Domingo, Dominican Republic: Vivian Brache, PI

• 3 treatment groups, randomized 2:2:1
 – TFV-only ring (n=20)
 – TFV/LNG ring (n=20)
 – Placebo ring (n=10)

• About 1 month of 90-day ring use, total 3 months participation
• 8 or 9 visits and 1 follow-up contact
Objectives

- **Primary:**
 - Genital and systemic safety

- **Secondary:**
 - Pharmacokinetics (PK) of LNG and TFV

- **Tertiary:**
 - Pharmacodynamics (PD) of LNG and TFV
 - Acceptability
Selected entry criteria

- Ovulatory baseline cycle (progesterone ≥3 ng/ml)
- Protected from pregnancy by one of the following non-hormonal methods:
 - Sterilization of either partner
 - Willing to abstain from vaginal intercourse
- BMI <30 kg
- May not use drugs that affect CYP3A4
Overall study design

<table>
<thead>
<tr>
<th>Screening/Enrollment</th>
<th>Pre-treatment cycle to document ovulation</th>
<th>Ring in place</th>
<th>After ring removal</th>
</tr>
</thead>
</table>

Leaders in Reproductive Health and HIV Prevention
Relationship of ring days to cycle days

As determined by ovulation predictor kit.
Expect to see greatest effects of LNG at Visit 6:
 - Less favorable cervical mucus and poorer sperm migration

<table>
<thead>
<tr>
<th>Visit #</th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Visit 3</th>
<th>Visit 4 (Ring insertion)</th>
<th>Visit 5 (24 hrs after Visit 4)</th>
<th>Visit 6 (At ovulation*)</th>
<th>Visit 7 (Ring removal)</th>
<th>Visit 8 (24 hrs after Visit 7)</th>
<th>Visit 9 (72 hrs after Visit 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring Day</td>
<td>NA</td>
<td>~ -14</td>
<td>~ -10</td>
<td>1</td>
<td>2</td>
<td>~8</td>
<td>~16-18</td>
<td>~17-19</td>
<td>~19-21</td>
</tr>
<tr>
<td>Cycle Day</td>
<td>Any day</td>
<td>21</td>
<td>24</td>
<td>7</td>
<td>8</td>
<td>~14</td>
<td>~22-24</td>
<td>~23-25</td>
<td>~25-27</td>
</tr>
</tbody>
</table>
Safety endpoints

<table>
<thead>
<tr>
<th>Visit #</th>
<th>Visit 4 (Ring insertion)</th>
<th>Visit 5 (24 hrs after Visit 4)</th>
<th>Visit 6 (At ovulation)</th>
<th>Visit 7 (Ring removal (8-10 days after Visit 6))</th>
<th>Visit 8 (24 hrs after Visit 7)</th>
<th>Visit 9 (72 hrs after Visit 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Day</td>
<td>7</td>
<td>8</td>
<td>~14</td>
<td>~22-24</td>
<td>~23-25</td>
<td>~25-27</td>
</tr>
<tr>
<td>Ring Day</td>
<td>1</td>
<td>2</td>
<td>~8</td>
<td>~16-18</td>
<td>~17-19</td>
<td>~19-21</td>
</tr>
</tbody>
</table>

Soluble immune mediators in CVL
- ✓

Microflora
- ✓

Tissue:
- • Histology*
- • Epithelial integrity*
- • Target cell phenotype/activation status
- • Markers of mucosal inflammation (gene expression)
- ✓

Microbial growth on and in returned rings
- ✓

Serum chemistries, CBC, lipids
- ✓

Colposcopy
- ✓ ✓ ✓ ✓ ✓

AEs
- ✓ ✓ ✓ ✓ ✓ ✓

* = EVMS only
TFV and LNG PK endpoints

<table>
<thead>
<tr>
<th>Visit #</th>
<th>Ring insertion</th>
<th>Ring in place</th>
<th>After ring removal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visit 4</td>
<td>Visit 5</td>
<td>Visit 6</td>
</tr>
<tr>
<td></td>
<td>Ring insertion</td>
<td>(24 hrs after</td>
<td>At ovulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visit 4)</td>
<td></td>
</tr>
<tr>
<td>Cycle Day</td>
<td>7</td>
<td>8</td>
<td>~14</td>
</tr>
<tr>
<td>Ring Day</td>
<td>1</td>
<td>2</td>
<td>~8</td>
</tr>
</tbody>
</table>

TFV & LNG in blood
- (1, 2, 4, & 8 hrs)
 - Also TFV-DP in PBMCs
- (1, 2, 4, or 8 hrs)

TFV in genital fluids (aspirates, swabs)
- (1, 2, 4, or 8 hrs)

TFV & TFV-DP in tissue
- (1, 2, 4, or 8 hrs)
- 1/2

LNG in genital fluids (swabs)

LNG in cervical mucus

Amount of drug in returned rings
-
LNG PD endpoints

<table>
<thead>
<tr>
<th>Visit #</th>
<th>Visit 4 Ring insertion</th>
<th>Visit 5 (24 hrs after Visit 4)</th>
<th>Visit 6 At ovulation</th>
<th>Visit 7 Ring removal (8-10 days after Visit 6)</th>
<th>Visit 8 (24 hrs after Visit 7)</th>
<th>Visit 9 (72 hrs after Visit 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Day</td>
<td>7</td>
<td>8</td>
<td>~14</td>
<td>~22-24</td>
<td>~23-25</td>
<td>~25-27</td>
</tr>
<tr>
<td>Ring Day</td>
<td>1</td>
<td>2</td>
<td>~8</td>
<td>~16-18</td>
<td>~17-19</td>
<td>~19-21</td>
</tr>
</tbody>
</table>

Cervical mucus: quality and sperm migration

Blood: estradiol (follicular development)
Blood: progesterone (ovulation)
Endometrium: thickness and histology (latter EVMS only)
TFV PD endpoints

<table>
<thead>
<tr>
<th>Visit #</th>
<th>Ring in place</th>
<th>After ring removal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visit 4</td>
<td>Visit 8</td>
</tr>
<tr>
<td></td>
<td>Ring insertion</td>
<td>Visit 9</td>
</tr>
<tr>
<td>Cycle Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>~23-25</td>
</tr>
<tr>
<td>8</td>
<td>~14</td>
<td>~25-27</td>
</tr>
<tr>
<td>14</td>
<td>~22-24</td>
<td></td>
</tr>
<tr>
<td>Ring Day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>~17-19</td>
</tr>
<tr>
<td>2</td>
<td>~8</td>
<td>~19-21</td>
</tr>
<tr>
<td>8</td>
<td>~16-18</td>
<td></td>
</tr>
<tr>
<td>Anti-HIV & anti-HSV in genital fluid</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Anti-HIV activity in explants (EVMS only)</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>
Study status

- As of March 13, 2015:
 - Participants enrolled: 45
 - Participants completed (goal 50): 19
- Interim analysis underway:
 - To obtain early indication of ring performance:
 - TFV and LNG PK
 - LNG PD
 - TFV PD (explants)
 - Results expected in mid-May 2015
- Estimated date of last participant visit: January 2016
- Data available Q2 2016
Challenges

• Ring design:
 – Sustained release for 90 days of 2 very different drugs at 2 very different rates, that would meet our preclinical benchmarks

• Study design:
 – Assessing PK and PD of 2 different drugs
 – Example: Visit 7 (ring removal)
 – 10 specimens collected (including 5 cervicovaginal biopsies and 1 endometrial biopsy) and sent to 7 labs
 – Transvaginal ultrasound
 – Colposcopy
 – Multiple procedures on removed ring

• Regulatory approach:
 – 2 indications
 – 2 INDs