PREP Adherence Measurement

David Bangsberg, MD, MPH

Mbarara University of Science and Technology Massachusetts General Hospital Center For Global Health Ragon Institute of MGH, MIT, and Harvard Harvard Medical School Harvard Global Health Institute

March, 2011

SUCCEED WE MUST

PREP Adherence

- Achilles heel of biomedical prevention
- Measurement challenge: relationship between product and sexual exposure.
- New conceptual frameworks to enhance intervention effectiveness

Interpretation of PrEP Adherence Requires Knowing Pattern of Dosing and Sexual Exposure Regimen: Monday, Friday and After Sex

Day	Μ	Т	W	Th	F	Sa	Su	Μ	Т	W	Th	F	Sa	Su	Μ	Т	W	Th	F	Sa	Su
Sex						Х				Х		X	X	X						X	X
Scheduled Dose	X				X	X		Х		X		X	Х	X	X				Х	X	Х
Actual Dose	X				X	Х		Х							X						
Adherence																					

Adherence 15/21 days = 71%

Day	M	Т	W	Th	F	Sa	Su	Μ	Т	W	Th	F	Sa	Su	Μ	Т	W	Th	F	Sa	Su
Sex																					
Scheduled Dose	X				X			x				X			x				X		
Actual Dose																					
Adherence																					

Adherence 0/21 days = 0%

Adherent

Nonadherent

Measuring Adherence

Subjective Measures

- Patient interview
 - Pill recognition
 - 3, 4, 7, 30 day patient report
 - Visual-analog scale
 - Rating scale
 - Computer assisted self interview (CASI)
 - Telephone assisted

Objective Measures

- Electronic monitoring
- Unannounced pill count
 - Home or usual place of residence
 - Telephone *a la Kalichman*
- Pharmacy refill
- Drug/biomarker levels
 - Plasma
 - Cervical/vaginal lavage
 - Hair
 - Breath
 - Chips/lasers/magnets
- Mucosal applicator staining

AIDS Behav DOI 10.1007/s10461-007-9261-4

ORIGINAL PAPER

Optimal Recall Period and Response Task for Self-Reported HIV Medication Adherence

Minyi Lu · Steven A. Safren · Paul R. Skolnik · William H. Rogers · William Coady · Helene Hardy · Ira B. Wilson

Received: 2 October 2006 / Accepted: 15 May 2007 © Springer Science+Business Media, LLC 2007

Distribution of Response Items

3-DAY RECALL

Rating: *Rate* your ability to take all your medications as prescribed" (6 categories: very poor, poor, fair, good, very good, and excellent

IPREX Positive and Negative Predictive Value of Dedtectable Drug by Level of Self-reported Adherence Rivet Amico et al CROI 2011

	Self-report Interview	Self-report CASI	Pill count	MPR	%
	N=179	N=179	N=179		N=179
None missed (≥100%) PPV	68%	62%	59%	>=1.25 PPV	75%
80-99% PPV	58%	66%	64%	1.0- <1.25 PPV	42%
>50-79% PPV	64%	43%	56%	>0.50- <1.0 PPV	39%
<=50% NPV	88%	78%	85%	<=0.50 NPV	100%
Missing (or don't know) NPV	81%	83%			

Patient Interview vs Unannounced Pill Count 4729 observations in 345 patients (Bangsberg unpublished)

30 Day Visual Analog Scale

Unannounced Home Pill Count

Self report

• Pros

- Inexpensive
 Monitors all medications
 Condetect patter
- Can detect patterns

• Cons

- Social desirability
- Remembering what you forgot
- Ceiling effect
- Limited precision

Interactive Voice Response/SMS Text

- Daily alcohol use, condom, and other frequent behavior (Barta, AIDS Care, 2007, Rose JGIM 2010, Midanick Drug ETOH Rev 2010; Schroder Curr HIV/AIDS 2009)
- Challenges confirming identify, does not remove social desirability bias (*Chang AIDS Patient Care STDS*, 2008; Curioso BMC 2007; Abayomi Afr J Med Sci 2006, Haberer, AIDS Beh 2010)

Phone-based data collection

• Pros

- Potential for use in remote areas
- Automated and scalable
- Potential for reduced social desirability bias
- Allows for frequent data collection
- IVR useful for illiterate participants
- SMS convenient, popular with youth

• Cons

- Requires cell phones and tech infrastructure
- Subject to network availability
- Initial start-up costs plus on-going fees
- Technical literacy

 Confirming correct patient identity in settings of shared/borrowed phones

Pharmacy Refill Adherence Predicts Viral Suppression Gross Pharmacoepi 2005, Grossberg J Clin Inv 2004

Low-Beer S, Yip B, O'Shaughnessy MV, Hogg RS, Montaner JS. J Acquir Immune Defic Syndr. 2000 Apr 1;23(4):360-1.

Nachega, J. B. et. al. Ann Intern Med 2007;146:564-573

Pharmacy Refill

Strength

- Inexpensive
- Multiple meds
- Pill box organizer compatible
- Feasible in RLS

Weakness

- No patterns
- Detects maximum possible adherence
- Multiple medication sources jepordizes accuracy (Acri Aids Beh 2010)
- Pill take back in RLS

Electronic Monitoring MEMS

Maier and Bangsberg PLOS March, 2006

Real-time Adherence Monitoring Systems Bangsberg JID 2008:3:272-8 Bangsberg and Deeks Ann Int Med;2010:152:54-6;

Measuring Adherence to Microbicide Applicators Using Electronic Containers

Electronic Monitoring

Strengths

- Precision
- Adherence patterns
- Real-time monitoring facilitates resolution of missed dose/device nonuse and intervention

Weaknesses

- Nonadherence to meds or device?
 - Pocket doses
 - Curiosity events
 - Discontinuation
- Multiple bottles
- Pill box organizer compatibility
- Expense
- Loss/technical failure
- Power supply
- Pill capacity

Unannounced Home Pill Count

MEMS vs. Unannounced Pill Count Adherence

Unadjusted MEMS (SF)

Adjusted MEMS (SF)

Adjusted MEMS (Uganda)

MEMS/Unannounced Pill Count vs HIV Viral RNA

Bangsberg DR, et al. AIDS. 2000:14:357

Bangsberg et al AIDS and Behavior 2001:5:275-281

Oyugi et al JAIDS 2004 36:1100

Telephone Assisted Unannounced Pill Counts

- Mobile phone-based unannounced pill counts compared to home-base pill counts in the US (*Kalichman JGIM 2008 and HIV Clin Trials*, 2008)
 - interclass correlation for the number of pills counted = 0.990-0.997, p<0.001</p>
 - Kappa coefficient for adherence levels = 0.94
 - Does not increase adherence over time (Kalichman in press)

Unannounced Pill Count

Strength

- Precise "average" adherence per month
- Multiple meds
- Consistent with pill box organizers
- Little differential missing data bias

Weakness

- Resource/personnel intensive
- Disclosure/privacy
- Pharmacy "take-back" in RLS

Drug Levels

Nettles et al. Marked intraindividual variability in antiretroviral concentrations may limit the utility of therapeutic drug monitoring.CID. 2006 April 15;42(8):1189-96

Drug levels highly variable in suppressed patients (Nettles et al)

- 10 pts on HAART (\geq 3 months) undetectable viral loads
- HIV RNA and drug level 3x/week same time/dose each day
- Intra-individual coefficients of variation 43% PI and 26% NNRTIS

Drug Levels

Liechty et al. Are untimed drug levels useful predictors of adherence behavior? AIDS 2004:18:127

- 83 patients with drug level and concurrent unannounced pill count
- Drug levels poorly associated with unannounced pill count
- Absent drug level confirms <60% adherence
- High drug level does not confirm >60% adherence

White Coat Compliance Limits Therapeutic Drug Monitoring Podsadecki et al HIV Clin Trials. 2008 Jul-Aug;9(4):238-46

- 190 pts on LPV/TNF/FTC with MEMS adherence for 96 weeks.
- PK collected for 768 visits
- Perfect adherence only in prior 3 days for 31% of PK visits

ARV Levels in Hair Indinavir in hair vs plasma

- 43 pts on ~4 mo of IDV HAART
- Models with sex, baseline PI-naïve status, starting viral load, levels – only hair levels associated with virological success (OR 3.88 (1.01-14.94) – not plasma
- Analogous to Hgb A1C

Drug Levels

• Pros

Objectively confirms ingestion

- Accommodates multiple medications
- Cons
 - Conflation of biologic and behavioral variability
 - Little information on pattern of adherence
 - Subject to white-coat compliance

Ingestible event markers*

- Metabolite detection
- ID-Cap
- MagneTrace
- ChipSkin
- Smart System
- Wristwatch

Proteus ingestible sensors

*Term coined by Jessica Haberer

Ingestible Event Markers

- Pros
 - May confirm ingestion depending on strategy
 Allows for tracking of individual medications
 Accommodates multiple medications
- Cons
 - Requires a detection device and adherence to the adherence monitoring strategy
 - Requires collaboration with drug manufacturers
 - Potential concern about technology at the patient level

Near Perfect Early Adherence to Antiretroviral Pre-Exposure Prophylaxis (PrEP) Against HIV Infection Among HIV-Serodiscordant Couples as Determined by Multiple Measures: Preliminary data from the Partners PrEP Study CROI 2011

Jessica Haberer, Jared Baeten, Connie Celum, Elioda Tumwesigye³, Elly Katabira, Meighan Krows, Lara Kidoguchi, Deborah Donnell, Andrew Mujugira, David Bangsberg

N=544

Clinic-based pill counts	99.6% (IQR 96.1-100.9)
MEMS	101.9% (IQR 97.4-104.7)
Unannounced pill counts	99.1% (IQR 97.2-100.0)

Additional measure: random home drug level in index and partner

Unannounced Pill Count vs MEMS in in Partners PREP Study

PARTNERS PrEP: ANCILLARY ADHERENCE STUDY

Comparison of MEMS cap and home visit pill count adherence -- report run July 27, 2010 Reflects data received by July 26, 2010

Safety and adherence to intermittent Emtricitabine/Tenofovir for HIV pre-exposure prophylaxis (PrEP) in Kenya and Uganda Mutua, Sanders, Kamali, Kibengo, Mugo, Anzala, Grosskurth, Haberer,

Bangsberg D, Barin B, Vooijs D, Verlinde C, Rooney, Fast, Berkley, Priddy IAS 2010

Group	Dosing Schedule	Kenya (MSM/FSW)	Uganda (DC)
Daily	Fixed	79% [61-95]	96% [86-100]
	Fixed	75% [61-93]	79% [68-82%]
Intermittent	Post-coital	0% [0-33]	40% [30-67]
	Post-coital within 2 hrs	100% [100-100]	100% [100-100]

Using an Interactive Short Message Service (SMS) data collection system in an HIV Pre-Exposure Prophylaxis clinical trial in Uganda and Kenya

Kamali , Mark, Haberer, Sanders, Mutua, <u>Kibengo</u>, Mugo, Anzala, Grosskurth, Burin, Bangsberg, Rooney, Lima, Fast, Berkley, and Priddy

IAS 2010

Response Rate	(%)	Daily FTC/TDF or placebo	Intermittent FTC/TDF or placebo	Total		
Kenya (n=68)	Median (Unadjusted)	23.3	30.2	24.7		
	Median (Adjusted for major SMS outages)	27.8	35.7	29.4		
Uganda (n=72)	Median (Unadjusted)	74.6	74.6	74.6		
	Median (Adjusted for major SMS outages)	80.3	80.3	80.3		

HPTN 069

PI: Gulick; Protocol Co-chari Mayer and Wilken

A Phase II Randomized, Double-Blind, Placebo-Controlled Study of the Safety, Tolerability, and Adherence of Maraviroc (MVC), Maraviroc + Emtricitabine (MVC+FTC), or Tenofovir/Emtricitabine (TDF/FTC) For Pre-Exposure Prophylaxis (PrEP) To Prevent HIV Transmission in At-Risk Men Who Have Sex with Men

- Adherence Measures:
 - Wisepill
 - Daily SMS of sexual exposure over 3 30 day assessments: Week 0-4, 20-24 and 44-48.
 - How many times did you have sex in the last 24 hours? 2) (if yes)
 - How many of these times did you use a condom?
 - Summary measure: % adherent sex acts dosing within 24 before/after exposure
 - Drug levels: blood, hair, and rectum

Conclusions

- Subjective
 - Memory limitation, social desirability
 - Ceiling effect
 - Qualitative over quantitative
 - Patterns and barriers
- "Objective" measures improve precision with tradeoffs in acceptability and cost
- Technological advances will increase feasibility of real-time monitoring and adherence case management to proactively prevent treatment failure

Summary

- Participant report has unavoidable limitations
 - Memory limitation, social desirability
 - Ceiling effect
 - Qualitative over quantitative
 - Patterns and barriers
- Emerging methods and strategies improve precision and discrimination
- Wireless technology is appealing for the real-time information
- Detecting timing of dosing relative to sexual exposure remains a challenge

Recommendation for Optimal PREP Adherence Measurement Today

- Real-time wireless container monitoring
- Daily SMS/IVR detection of sexual exposure over defined windows of observation, supplemented by timeline follow-back calendar recall
- Supplemented by random home-based plasma/cervical vaginal lavage drug levels.

What's Love Got to Do With It?

Courtesy Fran Priddy IAVI

Thanks to

- Jessica Haberer
- Connie Celum, Jared Baeten and team
- Fran Priddy
- Trip Gulick, Ken Mayer, Tim Wilkins
- Rivet Amico
- Norma Ware