HIV & Inflammation: Clues to Prevention Paradox

Betsy C. Herold, M.D.
Albert Einstein College of Medicine
The Children’s Hospital at Montefiore
Bronx, New York
Inflammation: Modulator of Mucosal Defense

- What is inflammation?
- What role does it play in HIV prevention?
- Is it friend or foe?
- Can it be exploited to promote protection?
What is inflammation?

- **Protective** tissue response marked by recruitment of WBCs, release of cytokines, chemokines, and antimicrobial proteins
- Serves to eliminate offending agent and damaged tissue
- Chronic inflammation associated with HIV progression
Inflammation and HIV Acquisition

- Transmitting viral load
- Stage of HIV infection
- Virulence
- Tropism (R5>X4)
- Target cells (#; activation)

Epithelial barrier
- Protective mediators
- Microbiota
- Host genetics (CR5Δ32)

Haase A, Nature 2010
Mucosal Mediators of “Inflammation”
Protective or Facilitators of HIV

- **Protective:**
 - Directly inhibit HIV infection
 - Maintain epithelial barrier
 - Promote healthy vaginal flora
 - Promote innate immune responses

- **Facilitators:**
 - Recruit and activate immune target cells
 - Activate NFκB pathways to promote HIV replication
 - Disrupt epithelial barrier
 - Interfere with innate responses
Cytokines/Chemokines

- Activators: Enhance HIV infection
 - TNFα, IL-1, IL-6, IL-12, chemokines
 - Activate NF-κB, which binds to HIV LTR to initiate or increase viral transcription.
 - Recruit and activate immune target cells

- Suppressors: Inhibit HIV infection
 - IFNα: Antiviral activity, suppresses RT
 - RANTES, MIP1α, MIP1β: inhibit co-receptor binding
 - IL-10: Inhibits HIV replication
 - IL-13: Down modulates CCR5 expression
Antimicrobial proteins

- **Defensins:**
 - Inhibit HIV in vitro (HBDs and HNP1-3)
 - BUT also recruit immune cells and induce inflammatory responses

- **SLPI**
 - Anti-inflammatory
 - Direct antiviral activity (?)
 - Higher levels associated with reduced HIV acquisition/transmission

- **Lactoferrin**
 - Direct inhibitory activity in vitro
 - BUT “alarmin”: recruits and activates immune cells
Mucosal inflammation and HIV

- Increased risk of transmission
 - IL-1β and IL-8 associated with higher cervicovaginal HIV-1 RNA concentrations, even after controlling for plasma viral load and vaginal microbial cofactors

- Increased risk of acquisition
 - Higher viral set point
 - Lower CD4 count

Roberts, L et al JID 2012 205(2): 194
Factors associated with ↑ HIV Risk

- Sex
- STI
 - HSV, HPV, Bacterial STD, Trichomonas
- BV
 - Decrease SLPI
 - Increase IL-1β
- Pregnancy
- Adolescents
- Depot medroxyprogesterone
Factors associated with ↑ HIV Risk

- **Sex**
- **STI**
 - HSV, HPV, Bacterial STD, Trichomonas
- **BV**
 - Decrease SLPI
 - Increase IL-1β
- **Pregnancy**
- **Adolescents**
- **Depot medroxyprogesterone**
Sex/Semen and Mucosal Inflammation

- Buffers protective acidic pH
- Enriched in cytokines/chemokines
- Triggers MIP-3α, GM-CSF, MCP-1, IL-6, and IL-8 from genital tract epithelial cells
- Induces TNFalpha

Lisco, A et al JID 2012; 1:97-105
Sex Increases Immune Targets

- Women who had sex within 3 days had higher cervical CD3+ (76 ± 4%) and CD4+ T lymphocytes (58 ± 6%) compared to women who last had sex >3 days prior to evaluation (CD3+ 54 ± 6%, CD4+ 39 ± 4%).

Factors associated with ↑ HIV Risk

- Sex
- **STI**
 - HSV, HPV, Bacterial STD, Trichomonas
- BV
 - Decrease SLPI
 - Increase IL-1β
- Pregnancy
- Adolescents
- Depot medroxyprogesterone
HPV

- HPV associated with increased HIV risk*
- ? Mechanisms
- Compared concentrations of immune mediators in CVL from HIV-negative women with high risk HPV positive (HRHPV+) CIN-3 (n=37), HRHPV+ CIN-1 (n=12), or PAP negative controls (n=57).

*Smith-McCune KK et al PLoS One 2010; 5:e10094
Cervical Dysplasia Associated with Lower “Protective” and “Higher” Inflammatory Mediators

Mhatre et al, under review
Factors associated with ↑ HIV Risk

- Sex
- STI
 - HSV, HPV, Bacterial STD, Trichomonas
- BV
 - Decrease SLPI
 - Increase IL-1β
- Pregnancy
- Adolescents
- Depot medroxyprogesterone
Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies

Julius Atashilia,b, Charles Poolea, Peter M. Ndumbeb, Adaora A. Adimoraa and Jennifer S. Smitha

- Possible mediators
 - Loss of H2O2 (directly virucidal)
 - Activation of CD4 by alkaline pH
 - Upregulation of cytokines that promote local HIV replication (TNF-alpha, IL-1 beta)
 - Direct stimulation of HIV expression from T cells/monocytes by BV-associated bacteria

Atashili 2008
Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies

Julius Atashili, Charles Poole, Peter M. Ndumbe, Adaora A. Adimora and Jennifer S. Smith

Possible mediators
- Loss of H2O2 (directly virucidal)
- Activation of CD4 by alkaline pH
- Upregulation of cytokines that promote local HIV replication (TNF-alpha, IL-1 beta)
- Direct stimulation of HIV expression from T cells/monocytes by BV-associated bacteria

Critically, BV has also been independently associated with increased risk of HIV transmission to uninfected male partners

Cohen C, IAS Rome, 2011
Factors associated with ↑ HIV Risk

- Sex
- STI
 - HSV, HPV, Bacterial STD, Trichomonas
- BV
 - Decrease SLPI
 - Increase IL-1β
- Pregnancy
- Adolescents
- Depot medroxyprogesterone
Pregnancy Associated with ↓ HBDs
and Higher “Inflammatory” Cytokines
Measurement individual mediators may not capture complex interactions

- “Functional assays”
 - Measure antimicrobial activity of secretions collected by swab or lavage
 - HIV
 - ??
 - HSV-2
 - Correlates with concentrations of HNP1-3, IL-8, Lf
 - E.coli
 - Proteomic studies suggest that this activity is mediated by host proteins and proteins secreted by Lactobacillus
Inflammatory Cytokines May Disrupt the Epithelial Barrier

Intact mucosal epithelium is impervious to HIV-1

Disrupted epithelium allows HIV-1 across to infect target cells

Apical well
Cells in polarized system
Basolateral well
Microbicides may disrupt this barrier directly or by increasing inflammatory cytokines.
Putting it all together..

- Factors associated with increased HIV risk characterized by increases in inflammatory cytokines, increase in activated immune target cells, and lower levels of protective mediators.

- Similar mucosal environment observed prior to HIV seroconversion; higher inflammatory mediators associated with higher viral set point.
 - CAPRISA 002
 - CAPRISA 004
But this is only a snap-shot

- Association is not causality
- Inflammatory signaling cascades are complex
- Some inflammation is protective
 - Primes innate immune responses
- Too much may increase HIV risk
 - MTN 001 data
 - Higher levels in U.S. vs. Durban participants
 - Lower levels after 6 wks vaginal TFV
 - Is this protective or facilitating HIV infection??
Interventions?

- Directly block inflammation
 - Must be fine-tuned
 - Not disrupt ability of mucosa to respond appropriately to other pathogens
 - Ex. Glycerol monolaurate blocks DC/T cell recruitment by blocking MIP3a responses (Haase et al)
Interventions

- Treat/prevent underlying causes
 - STD rx efforts have failed to reduce risk of HIV transmission or acquisition
 - May reflect persistent inflammation
 - Ex. Activated T cells persist after resolution of genital herpes lesions
 - Vaccines may hold greater promise

- Augment natural host defenses
 - INFs, TLR agonists, recombinant defensins
 - Double-edged swords
Future Directions: Knowledge Gaps

- Assessment of inflammatory status complex
- Measurements of individual mediators may not tell the whole story
 - Need to consider complex interactions between mediators/signaling cascades/downstream events
 - Functional assays may provide more comprehensive measure but biological significance of measures unclear
- Inflammation & Microbicide Trials
 - Inflammation increases HIV risk in both placebo and rx arms
 - BUT may interfere with drug activity
Acknowledgments

- Niall Buckley
- Natalia Cheshenko
- Colleen Cunningham
- Jeny Gharty
- Susan Irvin
- Rebecca Madan
- Pedro Mesquita
- Mohak Mhatre
- Jamie Oh
- Martha Stefanidou
- Natasha Verma

Mark Einstein
Harris Goldstein
Marla Keller
Jeanne Marrazzo
BSWG of the MTN
NIH, Einstein CTSA and CFAR

Mohak Mhatre
Gaps in Knowledge that Impact Prevention Efforts: PrEP and Vaccines

- What are the driving forces that enable virus to establish infection?
- How much virus is needed to transmit?
- What accounts for R5 viruses predominating?
- What are the first cells infected & what allows that infection to be amplified and disseminated?
- How do site specific differences in mucosal immunity impact HIV risk and prevention?

- Vagina, ectocervix: (Type II mucosa)
 - Stratified squamous epithelia
 - Sparse submucosal immune cells
 - IgG predominant immunoglobulin

- Endocervix and gut: (Type 1 mucosa)
 - Simple columnar
 - pIgA receptor; IgA predominates
 - MALT