Rectal Microbicides

Ian McGowan MD PhD FRCP
Magee-Womens Research Institute
University of Pittsburgh
Questions About Rectal Microbicides

- Are they needed?
- Would anyone use them?
- Would they work?
- Where is the science?
- How would they fit into the HIV prevention landscape?
Are Rectal Microbicides Needed?
US HIV Incidence in MSM

Sifakis F et al. JAIDS 2007
HIV Prevalence in African MSM

Beyrer Lancet 2012
Would Anyone Use a Rectal Microbicide?
Lubricant Use is Common Among MSM

Potential Rectal Microbicide Use

• Prevention preparedness studies
 – Gross et al. Sex Transm Dis 1998
• Conjoint analysis in Peruvian MSM
 – Kinsler et al. Int J STD AIDS 2010
• Community advocacy
 – International Rectal Microbicide Advocates
 – 1,100 advocates on six continents
 – http://www.rectalmicrobicides.org/
 Would Rectal Microbicides Work?
Non Human Primate Studies

- Cyanovirin-N / SHIV89.6P
 - Tsai et al. AIDS Res Hum Retroviruses 2003
- Tenofovir / SIVmac251/32H
- MIV-150 / SIVmac239
Rectal Macaque Tenofovir Data

- Proviral DNA
- Viral RNA

Colorectal Intestinal Explants

Endoscopic biopsies + Absorbable gelatin sponge

Colorectal Explant Infection

HIV-1 RNA/DNA & p24 (Mean ± SD)

- Malnati (DNA)
- Li/Wong (DNA)
- Rouet (RNA)
- Drosten (RNA)
- HIV-1 p24

Day 4 Day 7 Day 11 Day 14
Maraviroc In Vitro Colorectal Explant Efficacy Data

Dezzutti et al. CHARM Project 1
Ex vivo / In Vitro Challenge Model

Where is the Science?
Preclinical Development

• *In vitro* assessment of safety and efficacy
 – TZM-bl & PBMC
 – Explants

• Animal models of safety and efficacy
 – Humanized mice
 – Non-human primates

• Preclinical toxicology
 – Rabbits
 – Rats
Formulation Studies

• Formulation preference: gel and suppository
 – Carballo-Dieguez et al. Sex Transm Infect 2008

• Formulation volume
 – Carballo-Dieguez et al. Sex Transm Dis 2007

• Rectal specific formulation development and assessment
 – Wang et al. AIDS Res Ther 2011
Product Distribution

Phase 1 Development

- Nonoxynol-9 (HIVNET-008 study)
 - Tabet et al. *Sex Transm Infect* 1999

- UC781 (RMP-01 study)
 - Anton et al. *PLoS ONE* 2011

- Tenofovir (original formulation) (RMP-02/MTN-006 study)

- Tenofovir (reduced glycerin formulation) MTN-007
 - McGowan et al. *CROI* 2012
Key Findings from HIVNET-008

- Low-dose (52.5 mg/ml) N-9 was not associated with macroscopic rectal ulceration
- GI symptoms such as rectal fullness common after exposure to placebo and N-9
- High rates of histological abnormality after placebo and N-9 gels
- N-9 acceptability inconclusive and warranted further study of redesigned applicators and ways to minimize rectal side effects.

Gross M et al. Sex Trans Dis 1999
UC781 (RMP-01)

- Phase 1 study
- NNRTI
- Single & 7 day exposure
- Safe and acceptable
- Significant viral suppression in explant challenge

Anton et al. PLoS ONE 2011
RMP-02/MTN-006

Baseline Evaluation

Open label Oral tenofovir (N = 18)

Safety, PK / PD, acceptability

Single rectal tenofovir (N = 18) 2:1

7 Day Rectal tenofovir (N = 18) 2:1

Anton PA et al. CROI 2011
PK/PD Relationship

![Graph showing the PK/PD relationship between cumulative p24 (pg/mL) and Log_{10}[Tissue TFV-DP]fmol/mg for different dose forms: Oral Dose, Single Rectal Dose, and Multiple Rectal Dose. The graph includes a regression line with r^2 = 0.33 and P = 0.0011.](image)

Anton et al. *AIDS Res Hum Res* 2012
Phase 1 GI Adverse Events

RMP-02/MTN-006 (N = 12)

<table>
<thead>
<tr>
<th>GI Adverse Events in the Tenofovir Arm</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>6</td>
<td>50%</td>
</tr>
<tr>
<td>Rectal urgency</td>
<td>5</td>
<td>42%</td>
</tr>
<tr>
<td>Bloating</td>
<td>5</td>
<td>42%</td>
</tr>
<tr>
<td>Nausea</td>
<td>4</td>
<td>33%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7</td>
<td>58%</td>
</tr>
<tr>
<td>Flatulence</td>
<td>3</td>
<td>25%</td>
</tr>
<tr>
<td>Proctalgia</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>42%</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>100%</td>
</tr>
</tbody>
</table>
MTN-007

N=65

1% TFV (N=16)

2% N-9 (N=17)

Baseline Evaluation

Single dose

7-14 day interval

7-14 day interval

Endoscopy Safety/behavioral assessment

Screening

No Treatment (N=16)

HEC (N=16)
Phase 1 GI Adverse Events

<table>
<thead>
<tr>
<th>GI Adverse Events in the Tenofovir Arm</th>
<th>MTN-007 (N = 16)</th>
<th>RMP-02/MTN-006 (N = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Rectal urgency</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Bloating</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Nausea</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Flatulence</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Proctalgia</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

- Abdominal pain: 3 (16%) vs. 6 (50%)
- Rectal urgency: 0 (0%) vs. 5 (42%)
- Bloating: 0 (0%) vs. 5 (42%)
- Nausea: 0 (0%) vs. 4 (33%)
- Diarrhea: 1 (6%) vs. 7 (58%)
- Flatulence: 6 (38%) vs. 3 (25%)
- Proctalgia: 1 (6%) vs. 0 (0%)
- Other: 4 (25%) vs. 5 (42%)
- Total: 9 (56%) vs. 12 (100%)
Mucosal Safety Endpoints

- Epithelial sloughing
- Histopathology
- Mucosal mononuclear cell phenotype
- Mucosal cytokine mRNA
- Luminex
- Microarray gene expression
- Fecal calprotectin
- Rectal microflora
MTN-007 Gut T Cell Phenotype

- **CD45**: Common antigen leukocyte
- **Single Cell Population of the CD45+**
- **Live CD3+ Cell of the Single Cells**
- **CD4+ / CD8+ of the Live CD3+ Cells**
- **CXCR4+ & CCR5+ on CD4+**
- **CD69+ on CD4+**
- **CXCR4+ & CCR5+ on CD8+**
- **CD69+ on CD8+**
MTN-007 Microarray Data

No Treatment

HEC placebo gel

Nonoxynol-9 gel

Tenofovir gel
MTN-007 Microarray Data

- Significant modulation of mucosal gene expression after 7 days of TFV gel
- Key pathways effected:
 - Mitochondrial function ↓
 - Innate immunity ↑

<table>
<thead>
<tr>
<th></th>
<th>Up</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>N9</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>138</td>
<td>490</td>
</tr>
<tr>
<td>HEC</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>No Rx</td>
<td>17</td>
<td>6</td>
</tr>
</tbody>
</table>
Phase 2: MTN-017

- Phase 2 rectal safety study of tenofovir gel
- \(N = 186 \)
- International sites
 - United States (4)
 - Thailand (2)
 - South Africa (1)
 - Peru (1)

Endpoints
- Safety
- Adherence
 - Self report
 - Objective measures
 - Acceptability
 - PK/PD

PI: Ross Cranston
MTN-017

<table>
<thead>
<tr>
<th></th>
<th>8 weeks</th>
<th>8 weeks</th>
<th>8 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>TNF Gel Daily</td>
<td>TNF Gel With sex</td>
<td>Oral Truvada</td>
</tr>
<tr>
<td>BL</td>
<td>TNF Gel With sex</td>
<td>TNF Gel Daily</td>
<td>Oral Truvada</td>
</tr>
<tr>
<td>BL</td>
<td>Oral Truvada</td>
<td>TNF Gel With sex</td>
<td>TNF Gel Daily</td>
</tr>
</tbody>
</table>

Mucosal PK/PD subset (N = 36)
Phase 3 Development

- Contingent upon supportive data from MTN-017
- Placebo controlled trial of RG-TFV gel on expanded prevention package including oral PrEP
- N = 5,000 MSM & transgender women
- One year follow-up period
- US, Latin America, and Thailand
CHARM U19 Program Grant

- Combination HIV Antiretroviral Rectal Microbicide Program
 - Preclinical evaluation
 - Humanized mouse model
 - Phase 1 studies
 - CHARM-01 (TFV)
 - CHARM-02 (TFV)
 - CHARM-03 (MVC)

PI: Ian McGowan
GUYS EXPERIENCING LUBE

Project Gel

IS NOW ENROLLING

Call 412.641.3380
or visit www.microbicicides.us
for more information.
Microbicide Safety and Acceptability in Young Men

Stage 1A
Screening
240 MSM
Consensual RAI in last month
URAI in last year

Stage 1B
3 month Acceptability & Adherence study with placebo gel
120 MSM
RAI in last 3 months
STI negative

Stage 2
Phase 1 Tenofovir rectal safety study
24 MSM

PI: McGowan
Where Do Rectal Microbicides Fit in the HIV Prevention Landscape?
Combination Prevention

Conventional HIV Prevention Package + PrEP

SC ± Oral ± Rectal ± Vaginal

± HIV Vaccine
Rectal Microbicide Timeline*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal microbicides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

*An approximation based on tenofovir 1% gel
Summary

• There is a clear rationale for the development of rectal microbicides
• The design of rectal safety studies includes extensive mucosal immunotoxicity, PK, and PD assays
• Rectal specific products and applicators are being developed
• It is time to move to start preparing for efficacy studies
Acknowledgements

• University of Pittsburgh
 – Ross Cranston
 – Jonathan Baker
 – Charlene Dezzutti
 – Lisa Rohan
 – Laura Janocko
 – Kathy Duffill
 – Shaun Burneisen
 – Aaron Siegel
 – Alexiy Nikiforov
 – Vicki Elborne

• UCLA
 – Peter Anton

• Johns Hopkins
 – Craig Hendrix

• University of North Carolina
 – Victor Garcia

• Columbia
 – Alex Carballo-Dieguez

• Fenway, Boston
 – Ken Mayer

• IRMA
 – Jim Pickett
Collaborators

CONRAD
Leaders in Reproductive Health and HIV Prevention

GILEAD

INTERNATIONAL PARTNERSHIP for MICROBICIDES
Funding & Support

• DAIDS Medical Officers
 – Jeanna Piper
 – Lydia Soto-Torres
 – Hans Spiegel

• DAIDS IPCP Program
 – Jim Turpin
 – James Cummins
 – Fulvia Veronese

• NIH/NIAID/ DAIDS
 – U19 AI060614
 – U19 AI082637
 – U01AI068633-01
 – 5UM1AI068633

• NIH/NIAID/DMID
 – U01 AI066734

• NIH/NICHD & NIH/NIMH
 – R01 HD059533-01A1
Thank You